
NtMEMORANDUM

RM-3398-PR
"\APRIL 1963

I- SOME THOUGHTS ON
THE THEORY OF COOPERATIVE GAMES

Gerd Jentzsch

Edited by R. J. Aumann
C. "

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA - CALIFORNIA



MEMORANDUM

RM-3398-PR
APRIL 1963

SOME THOUGHTS ON
THE THEORY OF COOPERATIVE GAMES

Gerd Jentzsch

Edited By R. J. Aumann

This research is sponsored by the United States Air Force under Project RAND-
contract No. AF 49(638)-700 monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Development, Hq USAF. Views or conclusions
contained in this Memorandum should not be interpreted as representing the official
opinion or policy of the United States Air Force.

1700 MAIN ST - SANTA MONICA . CALIPOINIA



-iii-

PREFACE

This is an edited translation of a paper written by

Mr. Gerd Jentzsch at the Institute for Applied Economic

Research in TUbingen, West Germany, shortly before his

death in March, 1959, and issued in report form by that

Institute.

Game theory is important in its general applicability

to a variety of conflict situations-political and military

as well as economic. The present paper is a notable

technical contribution in an area of great current interest:

conflict situations in which the competing interests are

not directly opposed to one another.

Dr. Aumann, who has undertaken the editing of Jentzsch's

work, has provided an introduction to this translation, as

well as some supplementary notes and many corrections of

text. He is a Lecturer in Mathematics at the Hebrew

University, Jerusalem, and is now a consultant to The

RAND Corporation.



SUMMkARY

This work is the result of an attempt to generalize

the von Neumann-Morgenstern theory of n-person games by

eliminating the requirement that the utility functions

be linear, or more generally, by eliminating side

payments altogether. It is known that unless suitable

restrictions are imposed, the minimax theorem for

coalitions will not hold: outcomes will exist which can

neither be guaranteed by a coalition nor prevented by

the opposing coalition. Jentzsch addresses himself to

the task of broadening the class of games considered

by von Neumann and Morgenstern while retaining the

minimax property for coalitions. His chief result may

be described (for games with side payments) by saying

that each coalition must have a kind of "social utility

function" for money.
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EDITOR'S INTRODUCTION

The author of this paper, Gerd Jentzsch, died while

still a young man on March 26, 1959. This is apparently

his only publication. Judging from its originality and

all-around brilliance, his death was a loss of the first

magnitude to game theory.

The von Neumann-Morgenstern (N-M) theory of n-person

gares [4] is concerned with cooperative games in which side

payments are permitted and utility is "unrestrictedly

transferable"-that is, each player's utility for money

is linear in money. Jentzsch's investigations grew out

of an attempt to generalize the N-M theory either by

eliminating the requirement that the utility functions

be linear, or more generally, by eliminating side payments

altogether. He notices at the outset that the notion of

""heffectiveness"-which is crucial in the N-M theory-does

not generalize in a straightforward manner. In the classical

theory, a coalition K is effective for a payoff vector f

if, roughly speaking, the coalition can assure itself of

getting at least f. An equivalent definition of effectiveness

is that the opposition-the complement of K--cannot prevent

K from obtaining at least f. But when utilities are non-

linear in money or side payments are forbidden, these two

See R. D. Luce and H. Raiffa, Games and Decisions,
p. 168.

By the phrase "utility function" we shall henceforth
always mean "utility of money as a function of money."
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definitions of effectiveness are in general no longer

equivalent-in Jentzsch's terminology, the game need not

be "clear" (example 4). Jentzsch addresses himself to

the task of broadening the class of games considered by

von Neumann and Morgenstern, while still retaining the

clearness property.

The chief result is Theorem 21. Rather than stating

it here in its most general form, we will describe its

application to games with side payments ("money games"

for short) in which the utility functions need not be

linear. The problem that Jentzsch considers is, what

kinds of utility functions of the players will always

lead to clear games (as linear utility functions do)?

More precisely, what conditions, when placed on the

utility functions of the players, will ensure that all

money games in which these players participate are clear?

The answer is that each coalition must have a kind of

"social utility function" for money. For example, this

involves the demand that 50 dollars be indifferent-from

the point of view of the coalition as a whole-to some

probability combination of 0 dollars and 100 dollars

(though not necessarily the 1/2-1/2 combination). The

sums of money involved (50 dollars, 0 dollars, 100 dollars)

are not given to the individual players, but to the

coalition as a whole for distribution among its members.

"Indifferent" has a very precise meaning here: The two
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sets of (utility) payoff vectors that can result from

the two possibilities must coincide.

The existence of such a "social utility function"

is a considerable restriction. Jentzsch remarks without

proof that Bernoullian (i.e., logarithmic) individual utility

functions lead to a social utility function (examples 11,

16) and that other individual utility functions that lead

to a social utility function can be obtained as solutions

of a third-order differential equation with oine parameter

(which he does not specify). These questions must certainly

be investigated further. But on the whole, Jentzsch's

result shows that clearness is the exception rather than

the rule-that games with nonlinear utility functions or

without side payments cannot be "expected" to be clear.

The difference between the two kinds of effectiveness

was appreciated by others, working independently of

Jentzsch, as far back as 1957---which is probably the

approximate date of Jentzsch's investigations. It was

explicitly mentioned by Aumann and Peleg [2], who used

the names a- and f-- effectiveness for the two kinds. A

survey of the whole field of cooperative games without

side payments is given in [1], which has a bibliography

of 15 items; but of this work, Jentzsch knew only of the

pioneering investigation of Shapley and Shubik [5]. This

is another example of the known phenomenon of the intrinsic

* In fact, the idea is related to Blackwell's approach-

ability-excludability theory [3] which appeared already in
1956.
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"ripeness" of a scientific concept-leading to simultaneous

independent discovery by widely separated investigators.

It should be emphasized, though, that it is only in the

basic recognition of the difference bewteen ao- and P-

effectiveness that Jentzsch's work overlaps that of others;

the main result of this paper has not been found by anybody

else, and appears here for the first time. Indeed other

workers have approached the subject from a somewhat

different viewpoint-they have tried to "live with" the

difference, whereas Jentzsch characterized the conditions

under which it could be eliminated (see (1]).

An attempt has been made to keep editorial comment

separate from Jentzsch's original text. All the footnotes

are the editor's, as are the two "Editor's Notes." The

long formal proofs given by Jentzsch for Theorems 10 and

13 have been replaced by short intuitive sketches. There

has been some rearranging of the material, and the more

straightforward proofs have been left out. Those are all

the changes.

Since Jentzsch is interested only in the question of

effectiveness, he fixes once for all a coalition K, and

considers only the joint strategies of the coalition, the

joint strategies of the opposition, and the payoff to the

coalition. The resulting formal object is called a

"K-game," and this is the object of investigation throughout.

It is formally identical to Blackwell's "game with
vector payoffs" [3].
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The individual strategies of members of the coalition

and of the opposition, and the payoff to the opposition,

are of no interest in this context, and are therefore

suppressed in the formal model.

R.J.A.
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SOME THOUGHTS ON THE THEORY OF COOPERATIVE GAMES

1. K-GAMES

1.1. Definitions

Definition 1. F = F(S,T,r) is called a K-game if

K is a nonempty finite set, E = E(K) = {f = (f(k))kcKIf(k)

real for kEK} , S is a nonempty set, T is a nonempty set,

and r is a mapping of SxT into E.

We call K "the coalition", its elements "coalition

members", or simply "players." Members of " are called

"coalition payoff vectors", or simply "payoff vectors."

If the coalition members k anticipate the utilities f(k),

then we say that the coalition anticipates the payoff

vector f (f = (f(k))kzK). We call S "the set of strategies

of the coalition," T "the set of strategies of the

opposition," and r "the payoff function." In a K-game the

coalition chooses one of its strategies scS, and the

opposition independently chooses one of its strategies

teT. The payoff vector r(s,t) results.

Definition 2. Let r and F' be two K-games,

1-= r(S,T,r), F' - 7(S',T',r'). We say F is "isomorphic"

to F' if there is a one-to-one mapping a of S onto S'

and a one-to--one mapping T of T onto T' such that for all

seS, tcT, s'eS', t'cT', r(s,t) - r'( a(s), T(t)),

r'I(sI',t ) =~- l SI) 1(')
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Isomorphic copies of K-games differ only in notation.

Definition 3. Let feE(K), hEE(K). We write

f < h, if f(k) < h(k) for all kcK

f > h, if f(k) > h(k) for all kcK.

If the coalition has a choice between payuff vectors

f and h, and if f < h, f + h, then it will prefer h; h

obviously guarantees to each coalition member a utility

which is no less, and possibly greater than that received

under f. Let us assume that the interests of the opposition

are directly opposed to those of the coalition. If the

opposition can determine whether the coalition receives

f or h, and if f < h, f + h, then the opposition will see

to it that the coalition only receives f.

Definition 4. Let r = F(S,T,r) be a K-game,

S'C S, T'C T. S' is called "complete" in r, if for every

scS there is an s'cS' such that r(s',t) > r(s,t) for all

teT. T' is called "complete" in F, if for every teT there

is a t'cT' such that r(s,t') < r(st) for all seS.

Definition 5. Let P and F' be two K-games,

r - r(ST,r), r.' - I(s,T',r'). r' is called a "deflation"

or r, if S'CS, T'CT, r'(s,t) - r(s,t) for all seS', teT',

and S' and T' are complete in r.



-9-

The coalition attempts to obtain the best possible

payoff vectors and the opposition tries to counteract

this. Nothing essential is altered in the possibilities

open to either one, if they restrict their strategies to

choices from complete subsets of their strategy sets.

They can thus change from a K-game to one of its deflations.

Definition 6. Two K-games r and r7' are called

"equivalent" if there is a natural number N and a chain

of K-games - r0,...r N = r' such that for all n = 1,...,N,

rn is a deflation of rnI

rn is an isomorph of rnI, or

rn__l is a deflation of rn .

Definition 7. Every K--game r(S,T,r) has "character-

istic sets" V(s), V, U, U(t), where scS, tcT, defined by

V(S) = {feE(K) I for all tcT f < r(s,t)} $

U(t) = {feE(K) I there is an scS such that f < r(s,t)} ,

V U V(s), U n U(t).
seS tcT

These sets may be interpreted in the following manner:

V(s) is the set of payoff vectors which the coalition can

enforce by using strategy s. V is the set of payoff vectors

which the coalition can enforce.
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U(t) is the set of payoff vectors which the opposition

cannot prevent by using strategy t (for if the coalition

discovers the "correct" strategy s, then f < r(s,t)).

U is the set of payoff vectors which the opposition

cannot prevent.

Theorem 1. If U and V are characteristic sets

of a K-game (according to Definition 7), then V c U.

The opposition cannot prevent any payoff vector that

the coalition can enforce.

Proof. If fEV, then there is an sES such that fEV(s).

Then for every t, f < r(s,t). Therefore fEU(t) for all

tET. So fcU. f was arbitrary, so V c U.

Definition 8. Let I be a K-game, U and V characteristic

sets of r. r is called "clear" if V = U.

In a clear K-game the coalition can enforce precisely

those payoff vectors that the opposition cannot prevent.

Definition 9. Let P(S,T,r) be a K-game with the

characteristic sets V, U, U(t 0), where t 0ET. t0 is

called "optimal" and r (S,T,r) "classical" if V - U(t 0).

By using an optimal strategy the opposition can

prevent every payoff vector that the coalition cannot

enforce. In a classical K-game the opposition has an

optimal strategy.
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Theorem 2. Every classical K-game is clear.

Proof. According to Theorem 1, V C U. According

to Definition 7, U(t0 )U. From V = U(t 0) it therefore

follows that V = U.

Theorem 3. The properties "clear" and "classical"

are invariant under equivalence (Definition 6).

The proof is straightforward, and is omitted.

The existence of nonclear K-games is shown by the

following examples.

Example 1. Let

K = il}, S = {O,i}, T = {0,1} ,

r(O,0) = r(l,l) = (1), r(O,l) = r(l,O) = (-l),

S1 = P(S,T,r).

The characteristic sets of r1 are

V(O) = V(1) = V = {fEE(K) j f(l) _<-1i,

U(O) = U(1) = U = {feE(K) I f(l) < +l}

r1 is not clear.

Player 1 (as a one-man coalition) plays Matching

Pennies against the opposition, Since only pure strategies

are permitted, he cannot prevent the loss of his penny;

i.e., he cannot "guarantee" more than the loss of the penny.
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On the other hand, the opposition cannot prevent player

1 from winning the penny.

Example 2. (See Fig. 1). Let

K - {1,2}, S = {O,1}, T = {0,11,

r(O,O)- (2, -1), r(Ol)- (-2,1)

r(l,O) = (, -2) r(l,1) = (-1,2)

r2 = r(S.T.r).

The characteristic sets of r2 are

V(O) = {f I f < (-2,--1)}

V(l) - if I f < (-l,-2)}

V - V(O)UV(1),

U(O) = if I f < (2,-1)}

U(M) - {f I f < (-1,2)}

U - if I f_< (-<. -)}

There is no answer to the question of how a player

(or a coalition) should act in a nonclear situation such

as that in Matching Pennies. J. von Neumann circumvented

these difficulties in the case of a two-person zero sum

game by introducing mixed strategies. We will now see if

something similar is also possible for K-games.
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f(2)

f(()
If )

'HI H//A• U jU (0 ) -1
77j1

Fig. I

1.2. Convex Cooperative Games

Definition 10. Addition and scalar multiplication

on E - E(K) are defined as is usual for vectors, i.e.,

(f + h)(k) - f(k) + h(k) and (cf)(k) - cf(k).

Definition 11. Let r - P(ST,r), r'- r(s',T',r')

be two K-games. r' is called a "mixed extension of r"

if S' is the set of all finite probability distributions

over S, T' is the set of all finite probability distributions

over T and r'(s',t') is the expectation of the random

variable r(s~t) when s and t are distributed according

to s' and t' respectively. Intuitively, r, is obtained

from r by permitting the use of mixed strategies.
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Definition 12. A K-game r = r(S,T,r) is called

"convex" is for every pair s'ES, s1'eS and for every

probability p, 0 < p < 1, there is an scS such that

r(s,t) = (l-p)r(s',t) + pr(s'',t) for all tET, and if

for every pair t'eT, t''cT and for every p, 0 < p < 1,

there is a teT such that r(s,t) = (1-p)r(s,t') + pr(s,t'')

for all scS.

Theorem 4. Every convex K-game is equivalent to its

mixed extension.

The proof is straightforward, and is omitted.

Example 3. The mixed extension of "matching pennies"

(example 1) is classical with the optimal strategy of the

0opposition t = 1/2. Matching Pennies thus becomes

classical by the introduction of mixed strategies.

The next example shows that there are convex nonclear

K-games.

Example 4. (See Fig. 2). Let

K = {1,2}, S = {sJO < s K 1}, T = {tIO < t <K1

r(s,t) - (l--s)(l--t)(2,--l) + (l-s)t(--2,1)

+ s(l-t)(l,-2) + st(-1,2),

r4 - r(S,Tr).

In fact, if P is any K-game where K has only one member
and S and T are both finite# then the mixed extension of P
is classical. Indeed, such a game is essentially a finite
two-person zero-sum game, and its classicality is equivalent
to the minimax theorem.
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r4 is convex. It is the mixed extension of P2. Its

characteristic sets are

V(s) = {flf < (s-2,-l--s)} ;

V = {flf < (-1,-i), f(l) t f(2) K<-31,

U~t) M {ffIf< (2-4t,2t--l)', if t < 1/2 ,

U(t) = jflf < (1-2t,4t-2)}, if t > 1/2 ,

U = U(O) U(1) = {fIf < (-l,--)}

P4 is not pure. The opposition cannot prevent the payoff

vector (-1,-i), and the coalition cannot compel it.

f(2)

U(I) •j

I \

FI 2\

Fig. 2
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1.3. Perfect Information

We have seen that in K-games the admission of mixed

strategies was not sufficient to "clarify matters." Now

we will show in two examples that perfect information does

not play the same role in cooperative games that it does

in two-person zero-sum games.

Example 5. Let

K - {l}, S = {O,l}, T = i00,01,10,11j

r(0,00) = r(0,01) = (2,-l), r(0,10) - r(0,11) - (-2,1),

r(l,00) = r(l,10) = (1,-2), r(l,01) = r(l,ll) - (-1,2),

P5 = r(S,T,r).

15  can be represented by the "tree" in Fig. 3. "K"

indicates a move by the coalition and "0" indicates a move

by the opposition. P5 is of perfect information in the

sense of von Neumann and Morgenstern [4]. The characteristic

sets of '5 are:

K

(2,-I) (-2,1) 11,-21 3-1,2)

Fig. 3
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V(O) = {fif f< (-2,-1)},

V(l) = iflf < (-1,-2)}

V = V(O) U V(),

U(oo) = {flf _< (2,-i)1>

u(ol) - {fif < (2,.-i) or f < (-1,2)>,
("

U(lO) = tflf < (-2,1) or f < (1,-2)K,

U(11) = {flf < (-1,2)i.9

u = u(oo) n u(lo) n u(1).

We have U = V, so rP5  is clear. But it is not classical;

the opposition has no optimal strategy.

f(2)

u(io)]

i f(I)

S U(IO

FVg.U

Fig. 4
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Example 6, Let r6 be the mixed extension of r 5

(example 5). Then it can be verified that (-1,-i) is

in U but not in V; indeed if feV and f(l) = f(2), then

f < (-1.5,-1.5). Hence r6 is not clear.

Theorem 5. A K-game of perfect information

is not necessarily classical. There are nonclear K-games

with perfect information. There are clear nonclassical

K-games. The mixed extension of a clear K-game is not

necessarily clear.

Proof. Examples 5 and 6.

In von Neumann and Morgenstern the distinction between

clear and nonclear, and between classical and nonclassical

games did not arise. In their theory it was assumed that

the coalition was concerned only with the sum of the payoffs

of the coalition members, and that the coalition could

distribute this sum arbitrarily. How this should be done

in particular (especially when the "payoffs" are really

"expected payoffs") was not mentioned. In the next

section we will investigate several examples of side

payments in K-games.

1.4. Side Payments

In the examples studied so far the coalition members

were not allowed to make side payments to each other.

Now we wish to allow the coalition members to make side

payments to each other in one form or another.
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Example 7. Let

K - {l,2}, S - {sls real}., T - {fIo < t < 1

r(st) = (l-t)(l-s,s) + t(--s,l+s),

r 7 - Ir(ST,r).

Coalition member 1 pays to member 2 the amount of s

dollars (he receives -s dollars from member 2 in case

s < 0.) The opposition does not know this. It must pay

one dollar to player 1 or 2, and may determine the

recipient by a chance mechanism. The coalition members

are guided by the expected payoff.

The characteristic sets of r7 are

V(S) = if If < K ,Sj

V - {flf(1) + f(2) _< 0,

U(t) = iflf(1) + f(2) < 1,

U - {flf(l) + f(2) < i}.

r7 is not clear. A f(2)

'I 
U

V

U

v fi()

VNg\
Fig. 5
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Example 8. Let

K - {l,21, S - {s (s',s, )Is' real, s" real }
T - {tIO < t < 1}, r(st) - (1-t)(1-s',s') + t(-s",l+s''),

r 8 -r(ST .,r).

Here again the opposition pays one dollar to one to the

coalition members, and may choose the recipient by a

chance mechanism. The coalition members make the following

agreement: player 1 will pay s' dollars in case he

receives the dollar from the opposition; he will pay s''

dollars in case the dollar goes to player 2. The

opposition does not know of this agreement.

The characteristic sets of r8 are:

V(S) - {flf < (Min {l-s',-s''}., Minm~ l~1jj

V - {flf(l) + f(2) < 11,

u(t) - U - V.

r8 is classical; every strategy of the opposition is

optimal.

Examples 7 and 8 show that in general it is not the

same whether the side-payments must be carried out before

beginning the "actual game" (von Neumann and Morgenstern

[4] only discuss examples in which this is the case) or

whether the side-payments may have strings attached.
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Example 9. Let

K - {1,21, S - {sIO < s < 1000},

T - tio _< t t< 1}, 0 < p < 1,

r(s,t) - (l-t)((1-p)(0,0) + p(-s,s)) + t(-s,s),

r"9 - r(ST,r).

The characteristic sets of r"9 are:

V(S) - {flf < (-s'PS)},

V {fI f < (0, lOOp) and pf(1) + f(2) < 01,

U(t) - ifif < (0, 1000 ((l-t)p + t)) and f(1) + f(2)_ 0K

U - U(0) - {fIf < (0, 1000p) and f(l) + f(2) _ 0}.

r9 is not clear. To be sure, every payoff vector that

can be at all prevented by the opposition, can already

be prevented by using the strategy t - 0; but t - 0 is not

optimal. Figure 6 illustrates the case p - 1/2.

f(2)
U1000

U \500

V>

-1000 -500 f (")

Fig. 6
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P9 can be interpreted as follows: the coalition

members have no ready cash at the outset. However,

player 1 has prospects of a bank loan in the amount of

1000 dollars. He promises s dollars to his coalition

partner in case he should receive the loan. The bank

makes inquiries about player 1 from the opposition. If

the opposition gives a favorable report, then player 1

will get the credit; otherwise he will get it only with

probability p.

The coalition knows the probability p. However it

only will learn indirectly if the opposition has given

an unfavorable report, and then only when credit is

refused player 1. It is again assumed that the coalition

members are guided by the expected payoff (player 1

naturally must subtract the bank debt from his account).

Our example has been kept very simple. For instance,

we have neglected interest. The availability of cash

plays a large role in economic theory, as well as in

practice. Our example shows that one cannot count on

"clear' cooperative games as models for situations in which

the availability of cash plays a role.

2. K-GAMES WHOSE PAYOFFS ARE CATALOGUES

2.1. Catalogues. K-Games Whose Payoffs Are Catalogues

Definition 13. Let K be a coalition, E - E(K). A

subset F of E is called a "K-catalogue" or simply a "catalogue"

if
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F is nonempty, (KI),

F is convex, (K2),

and f < f' and f'eF imply feF, (K3).

(K3) says that F contains all the vectors that it dominates.*

Example 10. For each real y, let

F(y) - {ffE(K)I EkeK f(k) < y}l.

We call F(y) a "von Neumann K-catalogue."

Definition 14. If

Fn c E, Pn > 0, F + 0 for n - 1,...,N, EN P $
F _ +n=1 Pn

then let

EN. F fNePnfn- EN F for n - 1,...,N}
n-I PnFn n {fEE1f = n-i n

Theorem 6. If for n - 1,...,N, Fn is a K--catalogue,

and if

Pn p 0 1,N f EN Ff
-- ' n-1 Pn i n=l PnFn = F,

then F is likewise a K-catalogue.

In words: a convex combination of K--catalogues is a K-

catalogue. Intuitively, if the coalition can with

probability pn select an arbitrary payoff vector from the

catalogue Fn, then it can certainly select an arbitrary

payoff vector from the catalogue F.

The proof is straightforward and is omitted.

*Stearns [6] calls this "comprehensiveness."
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Definition 15. We call r a "K-game whose payoffs are

catalogues", or a "K-game for catalogues", if M,N,L,W

are nonempty finite sets,

z = (z )dEL, z _> 0 for tcL, EtL 't= 1.

d is a mapping of the cartesian product MxNxL into W

(so that d(m,n,l)cW for all mcM, nEN, tEL), Fw is a

K-catalogue for all weW,

X = {xlx = (xm)mcM, xm > 0 for mEM, EmEM xm -

S = {sis - (X,(fmw)mCM,wCW), xEX, fmwcFw for mcM, weW},

T = {tit = (tn)nEN, tn > 0 for neN, EncN tn - ill

r(s,t) = ZMEM EncNE EL Xm tnZfm,d(m,n,t) and

r = P(S,T,r).

We then also write r = F(M,N,L,W,zjd,(Fw)wEW)-

In a K-game for catalogues, the coalition selects its

pure fighting strategies mEM and its distribution methods

(fmw)weW with probabilities xm, where f wcFw for weW.

The opposition independently chooses one of its pure

strategies n with probability tn. Chance selects one of

its "strategies" t with probability z,. If the fighting

strategy m and strategies n and t are used, a situation

w results in which the coalition is entitled to choose one

A "strategy" in the sense of definition 1 is a pair
consisting of a fighting strategy" and a "distribution
method."
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payoff vector from the catalogue Fw. According to

plan it selects fmw. Thus the vector fm'd(m,n,n) results

with probability xmtnzt-

Theorem 7. K--games for catalogues are convex.

The proof is straightforward, and is omitted.

Editor's Note: K--games for catalogues

are a natural generalization of K-games with

unrestricted side payments. In the latter,

strategies (more precisely, "fighting

strategies") x and t are chosen by the

coalition and opposition respectively; the

resulting total payoff v(x,t) can then be

divided in an arbitrary way by the

coalition. Conceivably, the coalition could

even throw away part of the total payoff.

This means that the actual result of the

strategies (xt) is the von Neumann K-

catalogue

F - {f: EkEK f(k) < v(x,t)}

from which the coalition may choose any

payoff vector it pleases (see Fig. 7).
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•- Equation of boundary is

S/ 0) + f(2) = v Xt

F

Fig. 7

In a K-game for catalogues, the payoff

to a strategy pair (x,t) is not necessarily

a von Neumann catalogue, but may be an

arbitrary catalogue. This could result

from a situation in which side payments are

permitted but somehow restricted, or side

payments are unrestricted in monetary terms

but utility is not linear in money (see

example 11 below).

Briefly: A K--game for catalogues is a

finite two-person game in matrix form, in

which the entries of the matrix are K-

catalogues rather than numbers. The two

"players" of the game are the coalition

and the opposition. After a play is

completed, the coalition picks a payoff
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vector from the catalogue that resulted from

the play. Provision is also made for chance

moves.

Example 11. If

y > 0, B(y) = if E(K)I kEK exp(f(k)) y

then we call B(y) "Bernoullian."

Explanation: An amount y is divided among the

coalition members. Following Bernoulli, the members have

logarithmic utility functions. Assuming an appropriate

choice of scale, coalition member k therefore gets the

utility log(y(k)) from the portion y(k) > 0. From

E keKY(k) < y and f(k) = log(y(k)) it follows that

EkEK exp(f(k)) < y. B(y) is convex. Intuitively, B(y)

is the set of payoff vectors that are accessible to the

coalition if it has the amount y to divide.

2.2. K-CGames For Catalogues From 0

In the following, K will be an arbitrary but fixed

coalition. When sets of catalogues are mentioned, this

will mean that the catalogues are all K-catalogues for

the same K.

Definition 16. If 3 is a nonempty set of catalogues,

and r - P(MN,L,W,z,d, (Fw)wW) is a K-game for catalogues

which has the property that Fw 0 for all weW, then we call

r a K-game "for catalogues from 3."
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Example 12. Let 31 be the set of all von Neumann

catalogues F(y). We call a K-game for catalogues from

31 a "von Neumann K-game. "

We will see later that von Neumann K-games

are always classical. In order to demonstrate this and

more general results, we need some more definitions and

preliminary theorems.

Definition 17. A set 3 of catalogues is called

"clear" if every K-game for catalogues from 3 is clear.

A set 0 of catalogues is called "classical" if every

K-game for catalogues from 3 is classical.

Theorem 8. Every classical set of catalogues is

clear.

Proof: Follows from Theorem 2.

Example 13. We stated above that the set 3i of

von Neumann catalogues is classical, and that this would

be demonstrated in the sequel. It can be shown that the

set 32 of Benoullian catalogues B(y) (example 11) is also

classical.

Definition 18. If 0 is a nonempty set of catalogues,

then

CH(3) - (FCE(K)IF - EN F N}.n-i Pn n.0 Pn > 0, FneFj 'n= n
We cnll n- P

We call CH(O) the "convex hull" of O.
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Theorem 9. CH(3) consists of catalogues.

Proof : Theorem 6.

Theorem 10. If 3 is a set of catalogues, r a K-game

for catalogues from CH(3), then there is a K-game for

catalogues from 0 which is equivalent to F.

The idea of the proof is as follows: each strategy

triple (opposition, coalition, chance) in P yields a

catalogue 3 in CH(3). The catalogue 3 is a probability

combination of catalogues 3 in 3, say with probabilitiesn

Pn" If instead of awarding 3 for the given strategy triple,

we allow chance to choose On with probability pn and then

award On' we get the desired K-game for catalogues from

3 that is equivalent to F. Details of the proof are left

to the reader.

Theorem 11. If a set 3 of catalogues is clear, then

CH(3) is also clear. If a set 3 of catalogues is classical,

then CH(O) is also classical.

Proof: Follows from Theorems 3 and 10.

Definition 19. Let 3 be a nonempty finite set of

catalogues,

F 0 = n F, F1 the convex hull of U F,
Fea FiES

Fp - (l-p)F 0 + pF 1 for 0 p < 1.
0p
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3 is called r.o. ("real--ordered", i.e., ordered like the

reals) if for every Fc3 there is a p such that 0 < p _ 1

and

F = Fp, (r.o. 1)

and if for every f Fp there is an f 0 eF0 and an flcFl such

that

f = (l-P)f 0 + pf1 and fo K f < fl. (r.o. 2)

A set of catalogues is called "r.o." if every finite

nonempty subset of catalogues is r.o.

Editor's Note: That (r.o. 2) does not

follow from (r.o. 1) can be seen by the

example sketched in Fig. 8. If we define

= {Fp= (l-p)F0 + pF1 O < p < 1}, then

(-4,6)

(2 ,0)

Fig. 8
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0 satisfies (r.o. 1) but not (r.o. 2);

indeed (-2,3) eF1 / 2 , but there do not

exist foeF0 and fleFl such that f0 - (-2,3) < fl

and f = 1/2 f 0 + 1/2 fl"

Theorem 12. 01, the set of von Neumann catalogues

(see example 10), is r.o.

This is geometrically evident. The formal proof

is left to the reader.

Theorem 13. Every r.o. set of catalogues is classical.

The idea of the proof is as follows: Because 0 is

r.o., it is possible to associate with each F in 0 a real

"index" * a such that (l-p)Fa + pF = F(l-p)a + p., and

Fa D FP if and only if a > P. The coalition is therefore

interested in playing in such a way as to maximize the

expected value of the index and the opposition in minimizing

it. Thus we have essentially a finite two-person O-sum

game, and such games are classical. The

details of the proof are left to the reader.

Corollary. The set of von Neumann catalogues is

classical. Every von Neumann K-game is classical.

This is the "social utility function" mentioned in
the introduction.

Finiteness is specified in definition 15.

See footnote on page 14.
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Proof: Theorems 12 and 13.

Theorem 13 does not provide us with all of the

classical sets of catalogues. This is illustrated by the

following example.

Example 14. Let

K = {l,2},

F = {flf(1) + f(2) < 1, f(1) < 1, f(2) < 11P

H - {flf(l) + f(2) K 1, f(l) < 1, f(2) < I}.

a3- -F,H}.

3 is obviously not r.o. ((r.o. 1) is false). It is,

however, classical; indeed any mixed strategy of the

opposition that utilizes every pure strategy with positive

probability is optimal.

The converse of Theorem 8 is also false. There are

clear sets of catalogues that are not classical.

Example 15. K = {1,2},

a 4 ={{fflIfl) O}' {flf(2) < 01}

a4 is clear but not classical. Four cases can arise:

V = U - {flf < (O,O)}.

V - U - {•fjf < K00

V - U = If(2) < 0,

V = U = E({ 1,21).
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Example 15 shows that the definition of catalogue admits

quite pathological cases. In the following section we

will introduce the concept of a "regular" catalogue.

The converses of Theorems 8 and 13 are valid for regular

catalogues.

Our final example is:

Example 16. It can be shown directly that the set

a2 of Bernoullian catalogues is r.o., from which it

follows by Theorem 13 that it is classical (as remarked

in example 13). In addition to the Bernoulli utility

functions there is a family of other utility functions

(obtained as solutions of a differential equation of 3rd

order with one parameter) that generate r.o. and therefore

classical sets of catalogues. We will not deal with them

here.

3. K-GAMES FOR REGULAR CATALOGUES

3.1. Regular Catalogues

Inner products, the norm, and limits in E are as

defined as usual; that is, f.h - EkEK f(k)h(k), IfI = IF,

and lim fn = f if and only if lim fn(k) - f(k) for all

k (or equivalently, lim If - fn1 - 0). Furthermore,

we agree that f > 0 shall mean f(k) > 0 for all keK.

On the other side of the ledger, it is easy to give
examples of utility functions that generate sets of
catalogues that are neither r.o. nor clear nor classical.
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Definition 20. Let ucE, u > 0 and F c E, F + 0.

Then we define u(F) M suPfcF u.f, and F/u - {feFlu.f - u(F)}

Definition 21. A catalogue F is called "regular"

if for all ucE such that u > 0 we have

u(F) <K-, (K4)

F is closed. (KM)

Example 17. If fnEE for n = 1,...,N, and

F(fl,.,fN) = {fEElf < EN -- , N =
• "n=l Pnfn Pn >ý 0, EN- n

then we say that F is "generated" by the payoff vectors

fl'" .. fn"

Example 18. If F is a catalogue, feE, and for all

f'VeF we have f' < f, then we say F is "bounded" (short

for "bounded from above"). Catalogues generated by a

finite number of payoff vectors are bounded. Bounded

closed catalogues are regular. Catalogues generated by

a finite number of payoff vectors are regular.

Geometrically, a regular catalogue F is one which
has a supporting hyperplane in each strictly positive
direction. That is, for each u > 0 there is hyperplane
perpendicular to u that supports F. Von Neumann catalogues
are not regular. Bernoullian catalogues are regular. In
gene-r-aT, catalogues generated by utility unictions vk of
the coalition members are regular if vk(y)/y - 0 as y - 0.
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Lemma 1. If F is a regular catalogue,

fneF n - 1,2,... an arbitrary sequence of payoff vectors

in F, then at least one of the following two cases applies:

Case 1: For some subsequence (f nr of (ffn ), lim fnr' feF.

Case 2: For some subsequence (fnr), lim Ifnr' = + No
-1

lir Ifnr' fnr = ecE and lel - 1, e < 0.

Proof: The sequence (fn) is either bounded or

unbounded (in norm).

Case 1: If the sequence (fn) is bounded then it

contains a convergent subsequence; this converges to an

element of F, because F is closed.

Case 2: If the sequence (fn ) is unbounded then it

contains a subsequence whose sequence of norms tends to

infinity. If we divide every element of this sequence by

its norm, we will obtain a sequence of unit vectors. This

is bounded and therefore contains a convergent subsequence.

The set of unit vectors is closed; the unit vectors

therefore converge to a unit vector. Now it remains to

be shown that for this unit vector e we have e < 0,

i.e., e(k) K 0 for all kEK.

Let us assume there is a k"EK such that e(k")> 0.

Define ueE by the expression
-I

u(k') - 1 for k' + k'', u(k'') - (e(k")) (IKI + 1),

where IKJ is the number of coalition partners. Then
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u.e - u(k'')e(k'') + Ek,• k'' u(k')e(k')

and because e(k') > -1, u.e > (IKI + 1) - (IKI- 1) - 2.

Because lim fnrK1 fnr ' e, for sufficiently large nr

we have u.(IfnrV-I fnr) > 1. Then it follows that

U.fnr >Ifnrl for sufficiently large nr and since

(fnr)oF, lim ifnrl = + - , it follows that u(F)= + G.

But since u > 0 this contradicts the definition of a

regular catalogue. This completes the proof.

Theorem 14. If F is a regular catalogue, uEE,

and u > 0, then 1#u is a nonempty, bounded, closed and

convex set.

Proof: There is a sequence of payoff vectors fn

such that fncF and limr u.fn = u(F). Let us apply Lemma 1

to this sequence. Suppose Case 2 applies; we then have
fn -i -i

limifnrl lim- U. fnr u(F) < -, lim Ifnrl fnr= e

with lel 1 and e < 0. Then limr I fnrI U.fnr m 0 and
-i

lim u.(Ifnrl fnr) = u.e < 0, a contradiction. Therefore,

Case 1 must apply: lim fnr - feF. For this f, u.f - limr u.f nr

- u(F), therefore feF/u; so F/u is nonempty. Next, F/u

must also be bounded; otherwise there would be a sequence

f in F/u which contains no convergent subsequence.
n

Lemma 1 applied to this sequence would result in u.f - u(F),nr

lim fnrl-I 0, therefore limr u. (If 1 f 0 and

"limlfnrlufnr - u.e < 0 a contradiction. Finally, as

the intersection of the convex and closed set F and the
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convex and closed hyperplane {flu.f - u(f)}, F/u is

closed and convex.

Lemma 2. If F is a regular catalogue. hEE, and

u.h < u(F) for all ucE such that u > 0, then hcF.

Proof: Since F is nonempty and closed (K5), there

is an feF such that

(h-f). (h-f) < (h-f'). (h-f') for all f'CeF. (1)

F is convex. Therefore for the same f, the following also

holds:

(h-f).f = suPfIF (h-f).f'. (2)

Because of (K3), f < h, i.e.,

(h-f) > 0; (3)

for otherwise we could define f' by f'(k) = Min {f(k),h(k)}.

Then we would have fEF and f' < f, and so according to

(U3), f'cF. Hence

(h-f').(h-f') - (h-f).(h-f) - Zf(k) > h(k)(f(k)-h(k))2

contradicting (1); this establishes (3). Next, select an

arbitrary but fixed ueE with u > 0. For real c > 0, set

uc= h - f + cu. Certainly uceE and uc> 0, therefore

h.uc < uc(F), by hypothesis. Therefore

(h-f).h + cu.h K suPfeF ((h-f).f' + cu.f')

supflCF (h-f).f' + csupfI,,Fu.f.
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Application of (2) and Definition 20 yields

(h-f).h + cu.h < (h-f).f + cu(F), i.e.,

(h-f).(h-f) < c(u(F) - u.h) for all c > 0.

Since u(F) - u.h is finite, this is only possible if

(h-f).(h-f) = 0; therefore h - f. This proves hEF.

Theorem 15. If F and H are two regular catalogues,

0 < p _ 1, G = (l-p)F + pH, then G is a regular catalogue.

Proof: It follows from Theorem 6 that G is a catalogue.

We must establish the fact that G has the properties (K4)

and (K5) in Definition 21.

Let ueE, u > 0. Then u(G) = (l-p)u(F) + pu(H).

Therefore G has the property (K4). Now we must show that

G is closed (K5). For p -0 (G = F) and p =1 (G = H),

there is nothing to prove. So let 0 < p < 1. If gneG

for n = 1,2,..., and lim gn = g. then there are sequences

fn F, hneH, n = 1,2,... such that for all n, gn- (l-P)fn+ phn.

We apply Lemma 1 to the sequence (fn).

Case 1: lim fnr" feF. Because hnr= p-'l(gn--(--P)fnr),

there is an heH such that lim hnr- h - p- (g -(l-p)f);

therefore g - (l-p)f + ph, geG.

Case 2 cannot occur. For if
-i

"lim I fnr - + . lim I fnr' fnr" e < 0,

then we would have
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limr hnrl - + w and lim hhnr1-1 - -e > 0

(p is different from zero and one and the sequence

(9nr)iS convergent, therefore bounded.) However, Lemma 1

applied to the sequence (hnr) would give the result that-lhnr

lim Ihnrl _hnr • 0, since (hnr) can contain no convergent

subsequence. Since the requirements lel = 1, e < 0, -e < 0

are irreconcilable, the proof is complete.

Theorem 16. If 3 is a set of regular catalogues,

then CH(M) is also a set of regular catalogues.

Proof: Follows from Theorem 15.

Lemma 3. If F and H are two regular catalogues,

and if for geE we set P(g) = PIO < P < l,

g = (l-p)f + ph, fEF, hEH}, then P(g) is convex and closed.

Proof: Convexity is straightforward. To prove

closedness, let pnPeP(g) for n - 1,2,..., lim Pn -p

There are sequences fneF, hneH such that for n - 1,2,...

g - (l-Pn)fn + Pnhn* (1)

Let us apply Lemma 1 to the sequence fn"

Case 1: lim fnr " f, feF (2)

We again apply Lemma 1 to the appropriate sequence {hnr}*

Case 1.1. The sequence {hnr} has a convergent

subsequence. Then we have
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lim Pnrp= p, lim f nr- f, lim h nr- hEH;

passing to the limit, we obtain g = (l-p)f + ph, fEF,

hEH, and so pEP(g).

Case 1.2: lim f nr= fEF, lim ihnrmi = + *,

-1
limr hnrI I hnr"- e < 0, lej = 1. Because of (1) and (2),

this is only possible if lim p n= p = 0. If we show that

gEF, then we will have shown that pEP(g). Now because

of (1) and lim pnrp= 0 and (2),

-I
g - f = lim(p hnr)lim ) (nr" hnr"i)(Ihnr" I hnrp)

= Ig - fie < 0,

therefore g < f, feF; so according to (U3), geF.

Case 2: lir 1fnrl = + 0, lir if nr I- fnr = e, lel- 1,

e < 0. Again we will apply Lemma 1 to the corresponding

sequence {hnr}*

Case 2.1 (a subsequence of hnr converges) is

synhnetric to Case 1.2; one proves that p = 1 and geH,

from which it follows that pEP(g).

Case 2.2: lim Ifnrpl- -, lira Ihnr"I- =,

lim If nr 1 f nrP ef, lim 1h nr 1 hnr L = eh,

ef < 0, eh < 0. If for n > no it were always true that

0 < Pn < 1, then it would be true for nrp > no that

Ig- fnr 1 (9 -- fnrp) - Ihnr- g1- 1 (hnrk1- g)" In the

limit we would have eh - -ef, and this leads to the

contradiction I efj - 1, ef _ 0, ef < 0. It follows that
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Pn - 0 for infinitely many n, or pn - I for infinitely

many n; then, however, lim pn = 0, or, respectively,

lim Pn = 1. In each case, though, pn = p for certain n.

Therefore pEP(g), and the proof is complete.

Note: By repeated application of Lemma 1, we have

used both the fact that the catalogues F and H are closed,

as well as their property (K4). Lemma 3 is not valid for

closed nonregular catalogues.

3.2. Clear Sets of Regular Catalogues

Theorem 17. If 3 is a clear set of regular catalogues

and if F and H are in 3, then FUH is convex.

Proof: For gEE let P(g) be as in Lemma 3. P(g) +

if and only if g is an element of the convex hull of FUH.

Further, OEP(g) if and only if gcF, and lcP(g) if and only

if gEH. We must show that OEP(g) or lcP(g) if P(g) ý 0.

Let P(g) + 0. According to Lemma 3, P(g) is convex and

closed. Therefore, there are probabilities p',pi',

0 < p' < p'' < 1 such that P(g) = ip' < p K p''}

Let c = Mi {p, l-p''}. If c = 0, then p' = 0 or p"' - 1,

and OEP(g) or lcP(g). Therefore it is sufficient to show

that c - 0.

As an aid let us define a K-game 1' for catalogues

from CH(O).
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1' M r'(M,-NL,W,Zqd,(F ) QW, where

M - {Q,ij1, N - {O,l}, L - {0}, W - 00,O1,1O'0ll},

d(m,n,0) - nn,

F00 = (1--p'+ c)F + (p' - c)H, F01  (1-p 11)F + p''H

Flo z- (1-p')F + p'H-I F11 = (1-p"' --c)F + (p"' + c)H

Then

X = {(xY, x1) Ix0 Ž 0, X1 2 0, x0 + = }

T = {t = (to, tl)l to ý 0, ti ý 0, t 0 + t 1 =

S = {s = (x0,x1, (fwmM~C) (X0,x1)cX, f.wEFwI,,

and if we simply write f. in place of fm~~~$) - fm

then

r(s,t) = xoto f00 + x 0 tif01 + Xit 0f 10 + x 1 tlf11

Choose tE"T arbitrarily, t -(t01 tl). We will now define

seS so that x 0 = t1 O x 1 =-o.

foo= (l-p' + c)f + (p' - c)h, f01- (l-p'')f + p''ho

fl0= (l-p')f + p'h, f11= (l-p''- cOf + (p, I+ c)h,

where feF, heH. Then for this t and the s we have just defined,

we have r(s,t) - (l-p)f + ph, where p = top, + tip''

Because of the convexity of P(g), we have peP(g). We can

ther efore select feF and heH such that (l-p)f + ph -g.

Thus for every teT there is an seS such that r(s,t) -g.

Hence

geU, (1



-43-

where U is as defined in definition 7.

3 was assumed to be clear. According to Theorem 11,

CH(3) is also clear. P is a K-game forg

catalogues from CH(3). Therefore V = U must be true, and

so by (1), geV. So there is an seS such that for all

teT we have r(s,t) > g. For this s there are two

possibilities: 1. x0 = 1, 2. x0 < i.

1. x0 = 1, x, = 0. For t' = (1,0), we must have

r(s,t') > g. But this means f 0 0 > g. So there must be

an fcF and an hEh such that fo0 = (1-p' + c)f + (p'- c)h > g.

Because of the property (K3) of the catalogues F and H,

there are even fcF and heH such that (1-p' + c)f + (p'- c)h - g.

Therefore (p'- c) eP(g) = jpIp' < p < p''J. Because

c > 0, this is only possible if c = 0.

2. x0 < 1. For t'' = (0,1), we have r(s,t'') > g.

So r(s,t") = xof 0 1 + xlfll > g. Hence there must be

elements f 0 EF, fleF, h0 EH, hlcH such that x0 (l-p'')f 0 +

x1 (l-p''- Of, + x~p'h 0 + xl(p'' + c)hI > g. Because of

the convexity of F and H, then, there are also elements

fEF and hEH such that (1-p''- x1 c)f + (p'' + c)h > g.

As above, we conclude from this that (p"+ x1 c) ep(g),

from which because of x, > 0 it follows that c - 0.

Thus it has been shown in each case that we must have c - 0.

Theorem 18. If 0 is a clear set of regular catalogues,

Fe, He3, f'eF, h'eH, 0 < p < 1, g - (1-p)f' + ph', then
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there are elements fcF, hEH such that (l-p)f + ph - g and

moreover, either f < g < h or h < g < f.

Proof. By the given assumptions, g is an element of

the convex hull of F U H. According to Theorem 17, F U H

is itself convex, therefore g EF U H. There are three

possible cases: 1. gEF and gEH, 2. geF and gjH,

3. gjF and gEH.

1. If gEF and gEH, then we can select f - g = h.

2. This case is symmetric to the third case.

Thus the assertion in case 3 remains to be proved.

Assume gjF, gEH. We define a K-game with catalogues

from 3 as follows:

Pt = (M,N,L,W,z,d,(Fw)Ew) with M - 0}, N = {O,l}Fg

L {0,l}, W = J0,11, Z (Z03Z1 ) =(l-p,p),

d(0,0,O) = 0, d(0,n,t) = 1 for (n,t) + (0,0),

F0 - F, F1 = H.

In simplified notation we have the following:

S - {Sls - (f,h), fEF, hcHI,

T - {tlt - (tnotl), to 0 0, ti L 0, to + tI -

r(s,t) - to(l-p)f + (top + tl)h.

Choose teT arbitrarily, t - (to,tl). Because p > 0 and

teT, (top + tl) > 0. Because h'eH and gEH, since H is
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--i

convex, (top + t) (t 0 ph' + t 1 g) - h''•H. If we set

s - (f', h"), then seS and r(s,t)

-1

r(s,t) = t 0 (l-p)f' + (top + tl)(t 0 p + tl) (t 0 ph' + t 1 g)

= t 0 ((l-p)f' + ph') + t 1 g.

It was assumed that g = (l-p)f' + ph', therefore r(s,t) = g.

So for every tcT there is an sES such that r(s,t) = g.

Therefore geU (where U is as in Definition 7).

was assumed to be clear, therefore the K-

game r' for catalogues from 3 must be clear. Since
g

geU it follows that gcV, so gEV(s) for some seS. So there

must be an fEF and an hEH such that for all teT, we have

r((f,h),t) > g. In particular this inequality must hold

for t = (0,1) and for t = (1,0). The following inequalities

result: h > g and (l-p)T + ph > g. If we set f = (l-p);-g-ph),

then because of f ý_ f and (K3) for F, we deduce f > f. So

h > g _ f and (1-p)f + ph = g.

Lemma 4. If 3 is a clear set of regular catalogues,

FO, HE3, uEE(K), u > 0, u(F)<K u(H), then there is an

feF/u and an hcH/u such that f < h.

Proof: By Theorem 14, F/u and H/u are nonempty.

Therefore there are f'eF/u and h'WeH/u. We will select a

pi 0 < p < 1, set g = (l-p)f' + ph' and apply Theorem 18.

As a result we obtain an feF and an heH such that

g - (1-p)f + ph and f < g_< h or h < g < f. Since
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f'EF/u, h'cH/u, therefore (l-p)u.f + pu.h = u.g = (l-p)u(F)

+ pu(H). Because of 0 < p < 1 and the definition of u(F)

and u(H), this is only possible if u.f = u(F) and u(H) = u.h.

Therefore fcF/u, hcH/u.

If we had f > h and f + h, then we would have u.f > u.h,

which is not so because u(F) < u(H). Therefore f < h.

Theorem 19. If 3 is a clear set of regular catalogues,

FcO, HOi, and if for some ucE such that u > 0, we have

u(F) < u(H), then for all uEE such that u > 0, we likewise

have u(F) < u(H).

Proof: It is clearly sufficient to prove the assertion

for all ucE such that u > u. So let u < u, ucE. According

to Lemma 4 there are payoff vectors f 0 cF/u, h0 F/u such

that f0 < h0. Likewise there is an f'eF/u and an h'EH/u

such that f' < h' or h' < f'. We will now select a natural

number N > 1 such that N(u(H) - u(F)) > (u-_u).(f'-f 0 ).

For n = O,...,N we set u = N--l (N-n)u + N -- nu. Then
u0 t, UN= u and for n < N, (un- un) = N-1(u - u).

n+l n u-)
For n = O,...,N, according to Lemma 4 there are elements

fneF/Un and hneH/un such that fn-< hn or hn < fn; choose

fN f', hN = h'. We have u 0 (F) < u0 (H).

We now prove that if un(F) < u n(H) for n - 0,...,m-l,

1< m < N, then um(F) < um(H). By complete induction we

will then obtain UN(F) < uN(H), and therefore, as asserted,

u(F) < u(H).
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Let 0 < m < N, un(F) < un (H) for n = 0,...,m-l.

Then fn < hn for n = 0,...,m-l. We set dn = (un+l(H) -

Un+l(F)) - (un(H) - un(F)) for n = 0,...,N-1. Then
um(H) -u u(F) = u0 (H) - u0 (F) + n=l dn. Now

dn = (un+l - u n ).(hn- fn) + Un+l" (h n+1- hn)- Un+l"(fn+l- fn)"

By induction hypothesis, hn- fn > 0 for n = 0,...,m-1.

Moreover, it was assumed that u > u, therefore un+l- un > o-

Consequently it follows that (un+I- un).(hn- fn) > 0 for

n = 0,...,m-l. Because hn+lEH/Un+l and hnEH, we have

Un+I.(hn+I- hn) > 0 for n = 0,...,N-I. Similarly,

Un+l"(fn+l- fn) - 0 and un. (fn+l- fn) < 0, and a fortiori

(un+l-- un) (fn+l fn) -> Un+l" (fn+l- fn) > 0 for

n = 0,...,N--. We arrive at the estimate
N-].-I

um(H)- um(F) > u0 (H) - u 0 (F) - Zn=0 N-- fn'

--i

= u(H) - u(F) - N (u--_u). (f'--f 0 ).

However, N was so defined that the right side is greater

than zero; so Um(H) > Um(F). Thus the general inductive

step has been proved. Hence u(H) > u(F), and the proof

is complete.

Corollary 1. If 3 is a clear set of regular catalogues_

FG•, HeO, and if for some ueE such that u > 0 we have

u(F) = u(H), then F = H.

Proof: By Theorem 19, u(F) - u(H) for all ueE with

with u > 0. For all feF, u.f < u(H) for all u > 0;
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for all hcH, u.h < u(F) for all u > 0. Applying

Lemma 2 twice, we obtain FCH and HCF, therefore F - H.

Corollary 2. Every clear set of regular catalogues

is completely ordered by inclusion.

Proof: If F and H are two catalogues of this set,

and u > 0 is chosen arbitrarily, then u(F) _ u(H) or u(H) _ u(F).

Theorem 19 in combination with Lemma 2 then yields F C H

or HCF.

Theorem 20. Every clear set of regular catalogues

is r.o.

Proof: Let 0 be an arbitrary clear set of regular

catalogues. Then every nonempty finite subset of 0 is

also clear. Now let 0 be a nonempty finite set of regular

catalogues, F, - convex hull of U F, F0 n C F and
Fei FO

Fp = (l-p)Fo + pFI for 0 < p < 1. 3 is finite and,

according to Corollary 2 of Theorem 19, ordered by

inclusion. Therefore the intersection F0 and the union

of the catalogues in 0 are themselves in 0. The union

is therefore convex, so F1 is contained in 3. Thus Fp

is contained in CH(3) for all p, 0 < p _ 1. CH(O) is a

clear set of regular catalogues (Theorems 11 and 16).

Now let FeO; then FeCH(3). Choose ucE with u > 0.

Because F0 C F CFl, u(Fo) < u(F) < u(Fl). Therefore there

is a p with 0 < p < 1 such that u(F) - (1-p)u(F 0 ) + pu(Fj).
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Now U(Fp) - (l-p)u(Fo) + pu(F) - u(F). F and Fp both

belong to the clear set of regular catalogues CH(O); so

by Corollary 1 of Theorem 19, they are equal, i.e.,

F - F p. This is condition (r.o. 1).

Condition (r.o. 2) follows from Theorem 18 for

0 < p < 1; for if f 0 eF0 and flcFI are such that

f - (l-P)f 0 + Pfl and f 0 - f > fl, then because F 0CFI

we have f0EFI; and by property (K3) of the catalogue

F0 , fleF0 • When p m 0 or 1, condition (r.o. 2) is easily

verified.

If 3 is an arbitrary clear set of regular catalogues,

then according to what was just shown, every nonempty

finite subset of 3 is r.o. Then by Definition 19, 0 is r.o.

Theorem 21. For sets 3 of regular catalogues, the
properties "0 is clear"J "0 is r.o.", and "0 is classical"

are equivalent.

Proof: If 0 is a set of regular catalogues, then the

following holds: If 0 is clear, then 3 is r.o. (Theorem 20).

If 0 is r.o., then 3 is classical (Theorem 13). If 3 is

classical, then 3 is clear (Theorem 8).

It can be shown that the set of Bernoullian catalogues

is r.o., and therefore classical.
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